Lecture 03 : Chernoff Bounds and Intro to Spectral Graph Theory 3 1 . 1 Hoeffding ’ s Inequality
نویسندگان
چکیده
منابع مشابه
Further Optimal Regret Bounds for Thompson Sampling
The second last inequality follows from the observation that the event E i (t) was defined as μ̂i(t) > xi, At time τk+1 for k ≥ 1, μ̂i(τk+1) = Si(τk+1) k+1 ≤ Si(τk+1) k , where latter is simply the average of the outcomes observed from k i.i.d. plays of arm i, each of which is a Bernoulli trial with mean μi. Using Chernoff-Hoeffding bounds (Fact 1), we obtain that Pr(μ̂i(τk + 1) > xi) ≤ Pr(ik k > ...
متن کاملRandomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds
Certain types of routing, scheduling, and resource-allocation problems in a distributed setting can be modeled as edge-coloring problems. We present fast and simple randomized algorithms for edge coloring a graph in the synchronous distributed point-to-point model of computation. Our algorithms compute an edge coloring of a graph G with n nodes and maximum degree ∆ with at most 1.6∆+O(log n) co...
متن کاملOrie 6334 Spectral Graph Theory Lecture 21
Just like matrix Chernoff bounds were a generalization of scalar Chernoff bounds, the multiplicative weights algorithm can be generalized to matrices. Recall that in the setup for the multiplicative weight update algorithm, we had a sequence of time steps t = 1, . . . , T ; in each time step t, we made a decision i ∈ {1...N} and got a value vt(i) ∈ [0, 1]. After we made a decision in time step ...
متن کاملChernoff-Hoeffding Bounds for Markov Chains: Generalized and Simplified
We prove the first Chernoff-Hoeffding bounds for general (nonreversible) finite-state Markov chains based on the standard L1 (variation distance) mixing-time of the chain. Specifically, consider an ergodic Markov chain M and a weight functionf : [n] → [0, 1] on the state space [n] of M with mean μ , Ev←π[f(v)], where π is the stationary distribution of M . A t-step random walk (v1, . . . , vt) ...
متن کاملMaterial for ” Combinatorial multi - armed bandit
We use the following two well known bounds in our proofs. Lemma 1 (Chernoff-Hoeffding bound). Let X1, · · · , Xn be random variables with common support [0, 1] and E[Xi] = μ. Let Sn = X1 + · · ·+Xn. Then for all t ≥ 0, Pr[Sn ≥ nμ+ t] ≤ e−2t /n and Pr[Sn ≤ nμ− t] ≤ e−2t /n Lemma 2 (Bernstein inequality). Let X1, . . . , Xn be independent zero-mean random variables. If for all 1 ≤ i ≤ n, |Xi| ≤ k...
متن کامل